Introduction to JAGS
Introduction to JAGS
From http://mcmc-jags.sourceforge.net/ “JAGS is Just Another Gibbs Sampler. It is a program for analysis of Bayesian hierarchical models using Markov Chain Monte Carlo (MCMC) simulation…””
Installation
brew install jags
Then for R
you need first in ~/.R/Makevars
set correct CC
and CXX
fo JAGS:
CC=clang
CXX=clang++
Then start R
session and install rjags
:
install.packages("rjags")
Usage
Load package
library('rjags')
Specify model
model.str = "model {
for (i in 1:n) {
y[i] ~ dnorm(mu, 1.0/sigma2)
}
mu ~ dt(0.0, 1.0/1.0, 1)
sigma2 = 1.0
}"
Set up the model
y <- c(1.2, 1.4, -0.5, 0.3, 0.9, 2.3, 1.0, 0.1, 1.3, 1.9)
n <- length(y)
data.jags <- list(y=y, n=n)
params <- c("mu")
inits <- function() {
inits <- list("mu"=0.0)
}
model <- jags.model(textConnection(model.str), data=data.jags, init=inits)
Run sampler
update(model, 500)
model.simulation = coda.samples(model=model, variable.names=params, n.iter=1000)
Post processing
library("coda")
plot(model.simulation)
Updated: 2020-12-03